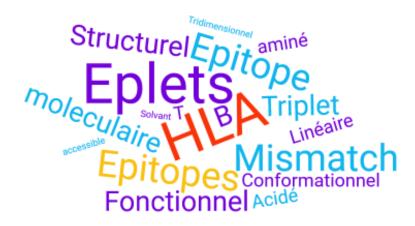
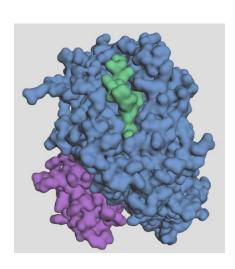
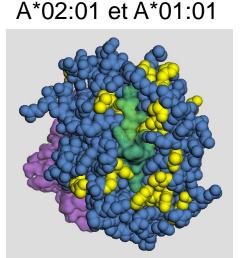


MISMATCH MOLECULAIRE

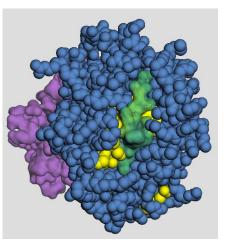

Epitopes au laboratoire HLA, présentation générale


Introduction


Qu'est-ce que le mismatch moléculaire ?

C'est considérer l'incompatibilité entre le HLA au niveau des molécules en tant que tel

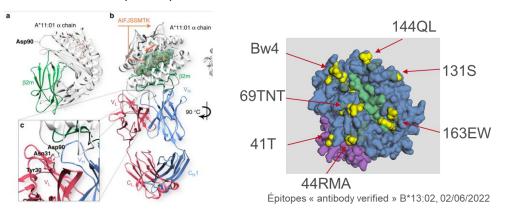
Au niveau antigénique : A2 VS A1 = 1 incompatibilité A2 VS A68 = 1 incompatibilité



Différences entre

Différences entre A*02:01 et A*68:01

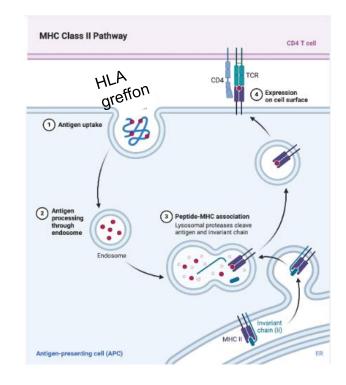
> Un meilleur moyen pour parler de compatibilité Donneur / receveur que la nomenclature


efs.sante.fr

Introduction

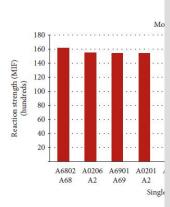
Pourquoi au niveau moléculaire ?

Epitope B

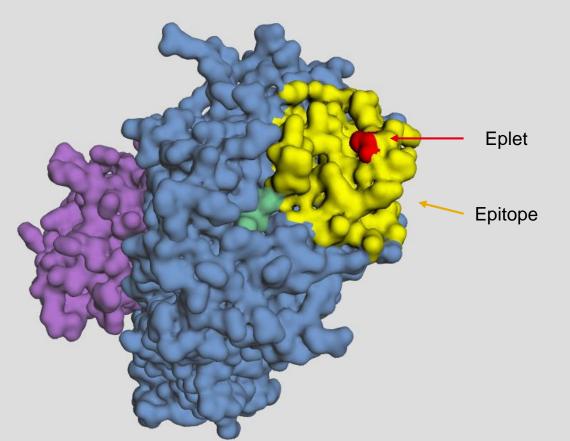

- Reconnu directement par un anticorps
- Liaison antigène / Anticorps tridimensionnelle :
 - Importance de la conformation
- Partie fonctionnelle : eplet (3A°)
- Partie structurelle : autres acides aminés influencant la réaction (15A°)

Gu, Y., Wong, Y.H., Liew, C.W. et al. Defining the structural basis for human alloantibody binding to human leukocyte antigen allele HLA-A*11:01. Nat Commun 10, 893 (2019).

Epitope T


- Pas reconnu directement mais doit être d'abord préparé :
- Protéine d'origine dégradée puis peptide présenté par les molécules HLA
- Pour être reconnue par les lymphocytes T
- Obligatoirement linéaire

Epitope et Eplet


Pourquoi au niveau moléculaire ?

→ Différence sur les maléaules lu Alantas Dansaum et Dansaum

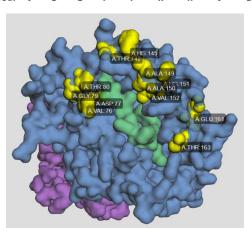
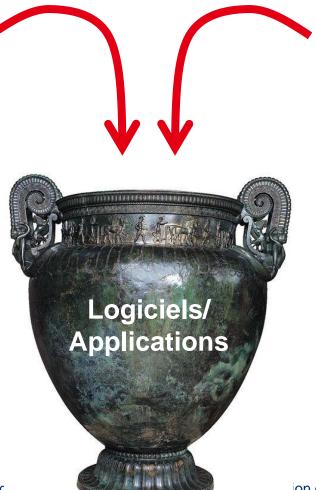

		aa	positi	on		
Antigen	Allele	149	150	151	Antigen	Al
A1	A*0101	A	V	H	A1	A'
A68	A*6802	A	A	Н	A24	A:
A2	A*0206	A	A	Н	A11	A'
A69	A*6901	A	A	Н	A11	A'
A2	A*0201	A	A	Н	A24	A'
A68	A*6801	A	A	Н	A2	A3
A3	A*0301	A	A	Н		

FIGURE 5: Epitope 422 shared by A-locus antigens A2, A3, A11 One amino acid substitution at position 149 (aa T substituted fi A*0201 and A*0206 are positive.

Struct of Epitope: 150AAH Yes

1	Resid	ue Diff	erence	s with	in 15 Å					
Eplet	76	77	79	80	142	144	145	152	161	163
150AAH	V	D	G	T	T	K	н	V	E	T
150AAH	V	D	G	T	T	K	Н	V	E	T
150AAH	V	D	G	T	T	K	Н	V	E	T
150AAH	V	D	G	T	T	K	Н	V	E	T
150AAH	V	D	G	T	1	K	R	E	D	T
150AAH	V	D	G	T	1	K	R	Α	E	R
150AAH	V	D	G	T	1	K	R	Α	E	R
150AAH	E	N	R	- 1	1	K	R	V	E	T
150AAH	E	N	R	- 1	1	K	R	V	E	T
150AAH	V	D	G	T	T	K	н	V	E	T
150AAH	V	D	G	T	T	K	Н	V	E	T
150AAH	V	D	G	Т	T	K	Н	V	E	Т

r et al, Human Immunology 71: 456-461, 2010: nal antibody X8032.H0 (IgM) produced by immunization pe as HLA-A2, A3; B7, B62. Equivalent to TerEp #422


efs.sante.fr

Que faut il pour travailler?

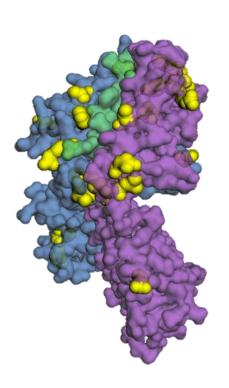
Du typage HLA en haute résolution

Typage HLA de receveur :

• En haute résolution

Typage HLA de donneur

 Haute résolution bientôt en urgence


- Sinon, possible de réfléchir sur la base des allèles les plus probables
- Ou Imputation possible si besoin <u>selon le typage</u>

Le principe

Il faut une calculatrice

Une molécule HLA est une suite d'éplets

Exemple de calcul classique de logiciel (Eplets confirmés)

Patient:

A*01:01: 44KM 62QE 65RNA 76ANT 79GT 90D 138MI 144K 144KR 163R 163RG 166DG

A*02:01 : 62GE 62GK 79GT 107W 127K 144K 144TKH 145KHA 150AAH 253Q

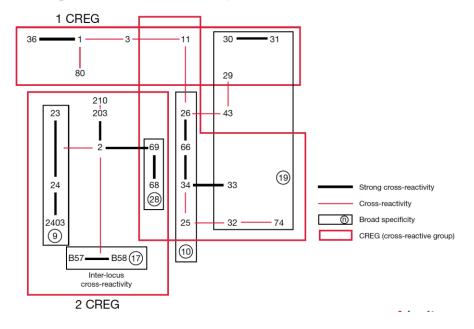
Donneur:

A*03:01: 62QE 65RNA 79GT 138MI 144K 144KR 150AAH 161D

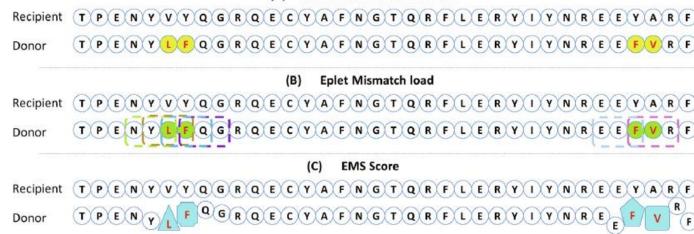
A*68:01 : 62RR 65RNA 79GT 127K 144K 144TKH 145KHA 150AAH 253Q

➤ Mismatch load (MML) = 2

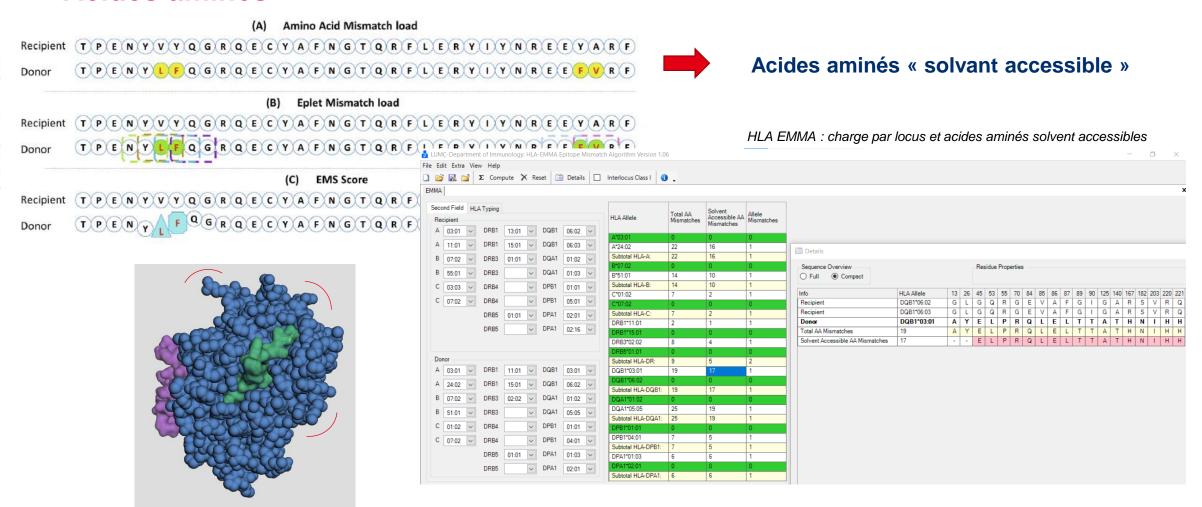
(Les autres sont communs avec le patient)

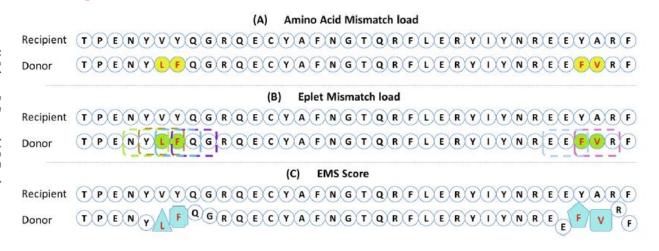

efs.sante.fr

Du CREG à la charge électrostatique



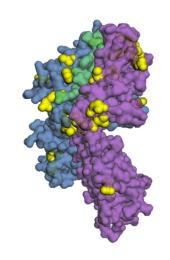
N. Saleem, R. Das and A.R. Tambur Human Immunology 83 (2022) 233–240


Serological cross-reactivity—HLA-A locus

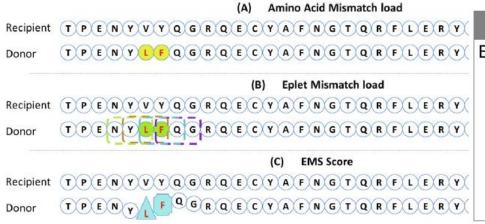

(A) Amino Acid Mismatch load

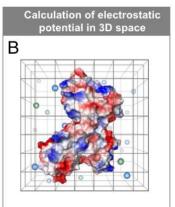
Acides aminés

Eplets



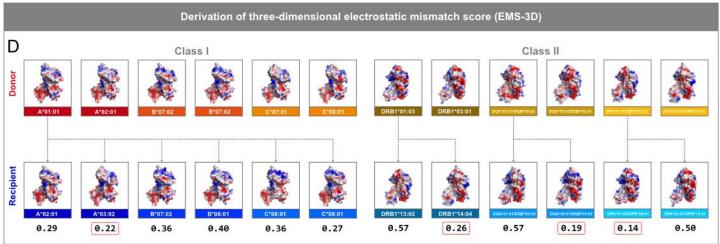
Eplets vérifiés expérimentalement « confirmed ou Antibody verified »

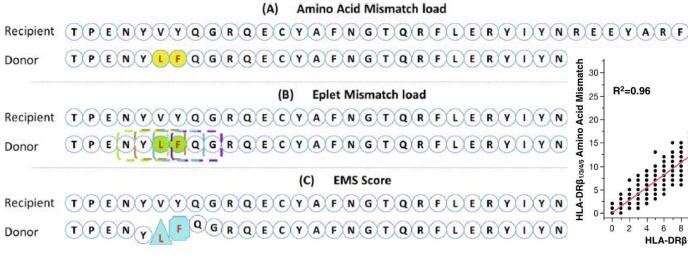

ou uniquement prédits


« HLA Matchmaker »

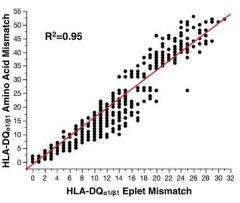
Donor/Immunizer	r Vs. Patient 1		A/B/C	DRB1/3/4/5 23	DQA1/DQB1 26	DPA1/DPB1	MICA	TOTAL 49	^	
HLA LOCI GROUP	MISMATCHES QTY.	MISMATCHES DETAILS								
A/B/C	A/B/C Results omitted because donor/immunizer and patient were not typed for this HLA locus									
DRB1/3/4/5	All mismatches: [11STS], 13SE, [16Y], 26F, 28D, 31F, 31FY, 37Y, [37YV], [47F], [57DE], [57S], 67F, [70D], [70DA], 70DRA, 74L, 96H, [96HK], 140TV, 149H, 189S									
21(21)0)4)0	23	Single-allele mismatch load: DRB1+11:01 19 DRB1+08:01 19								
DQA1/DQB1	All mismatches: 9F, 13GM, 37YA, [40GR], [45EV], [55PP], 55PPD, [56L], 56PD, [61FT], 66D, 66ER, 66IL, 66IT, 67VT, 70RT, 74EL, 75IL, [75S], 76L, [77T], [84QL], 129H, 167H, 175E, [182N]								,	
	Single-allele mismatch load: DQB1+03:01 13 DQA1+05:05 6 DQB1+04:02 8 DQA1+04:01 7									
DPA1/DPB1		Results omitted because donor/im	nmunizer and p	atient were not typed for	this HLA locus					
MICA		Results omitted because donor/immunizer and patient were not typed for this HLA locus								

Charge électrostatique



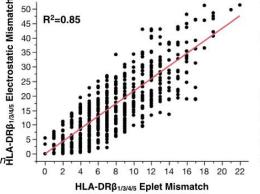

Electrostatisme « en 3D »

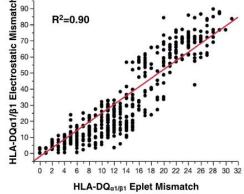
EMS_{3D}



efs.sante.fr

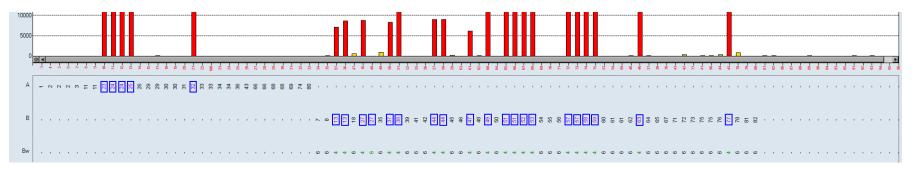
Quel outil choisir?





- Aas, Eplets et EMS très corrélés :
- → Mais besoin de plus d'études « comparatives »

C. Wiebe, V. Kosmoliaptsis, D. Pochinco, C.J. Taylor, P. Nickerson, A Comparison of HLA Molecular Mismatch Methods to Determine HLA Immunogenicity, Transplantation. 102 (2018) 1338 1343. 10.1097/tp.000000000002117.



Les épitopes permettent

Expliquer une immunisation anti HLA

- >> Cross réactivités
- >> Distinguer les DSA relevants de ceux qui le sont moins
- >> Faire un choix sur des réactivités douteuses

- > Réactivité vis-à-vis de nombreuses spécificités
 - Anti Bw4
 - Résidus 77 + 80 81 82 83

Serological epitope	Class I locus	77	80	81	82	83	Tested HLA allele
-							
Bw4	HLA-A,B	N	I	Α	L	R	B*5801, B*5101, B*1513, A*2403
	HLA-B	N	T	Α	L	R	
	HLA-A	S	I	Α	L	R	A*2501
	HLA-B	S	T	L	L	R	
	HLA-B	D	T	L	L	R	B*2705
Bw6	HLA-B	S	N	L	R	G	B*1502
	HLA-B	G	N	L	R	G	

Pourquoi évaluer la charge épitopique (Molecular Mismatch Load)?

Estimer un potentiel d'immunisation anti HLA

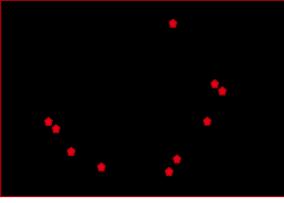
- → Mieux matcher donneur et receveur pour
 - Diminuer l'apparition d'anticorps HLA anti greffon de novo
 - Diminuer le risque de rejet humoral (et cellulaire)
 - Augmenter la survie des greffons
 - Adapter l'immunosuppression de manière plus
 « personnalisée »
 - Re-greffer plus facilement

C. Wiebe, P.W. Nickerson, Human leukocyte antigen molecular mismatch to risk stratify kidney transplant recipients, Curr. Opin. Organ Transplant. 25 (2020).

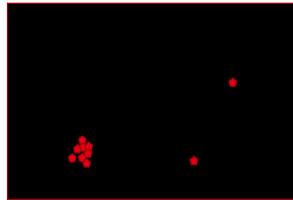
HLA-DR/DQ molecular mismatch: A prognostic biomarker for primary alloimmunity.

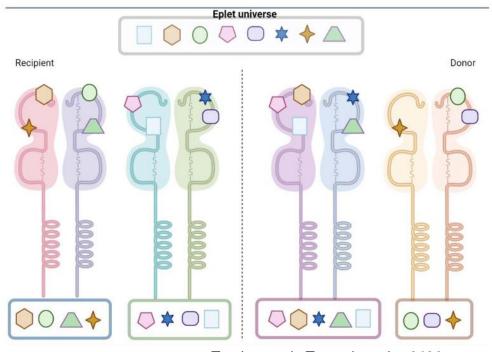
Wiebe C, Kosmoliaptsis V, Pochinco D, et al. Am J Transplant. 2019:19:1708–1719.

- C. Wiebe, D.N. Rush, T.E. Nevins, P.E. Birk, T. Blydt-Hansen, I.W. Gibson, A. Goldberg, J. Ho, M. Karpinski, D. Pochinco, A. Sharma, L. Storsley, A.J. Matas, P. W. Nickerson, Class II eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development, J. Am. Soc. Nephrol. 28 (2017) 3353–3362,
- S. Davis, C. Wiebe, K. Campbell, C. Anobile, M. Aubrey, E. Stites, M. Grafals, E. Pomfret, P. Nickerson, J.E. Cooper, Adequate tacrolimus exposure modulates the impact of HLA class II molecular mismatch: a validation study in an American cohort, Am. J. Transplant. 21 (2021).


HLA (emphasis on DQ) compatibility for longer allograft survival in pediatric transplantation: Modern evidence and challenges. Meneghini and Tambur, Ped. Transplant, 2023.

Le concept

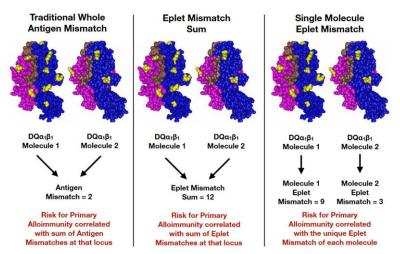

Du fond immunologique au single molecule


→ Compter les épitopes c'est bien, mais...

10 eplets mismatchs

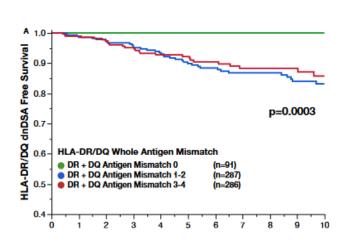
10 eplets mismatchs

Tambur et al., Transplantation 2023

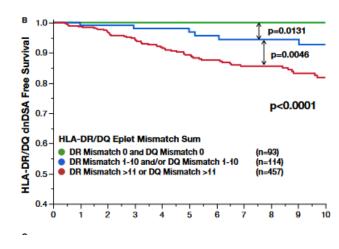


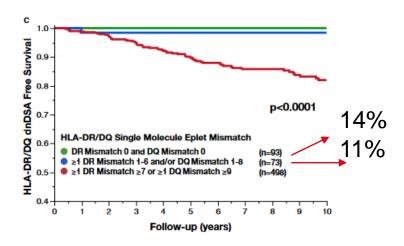
Resultats du Single Molecule

HLA-DR/DQ molecular mismatch: A prognostic biomarker for primary alloimmunity.


Wiebe C, Kosmoliaptsis V, Pochinco D, et al. Am J Transplant. 2019;19:1708–1719.

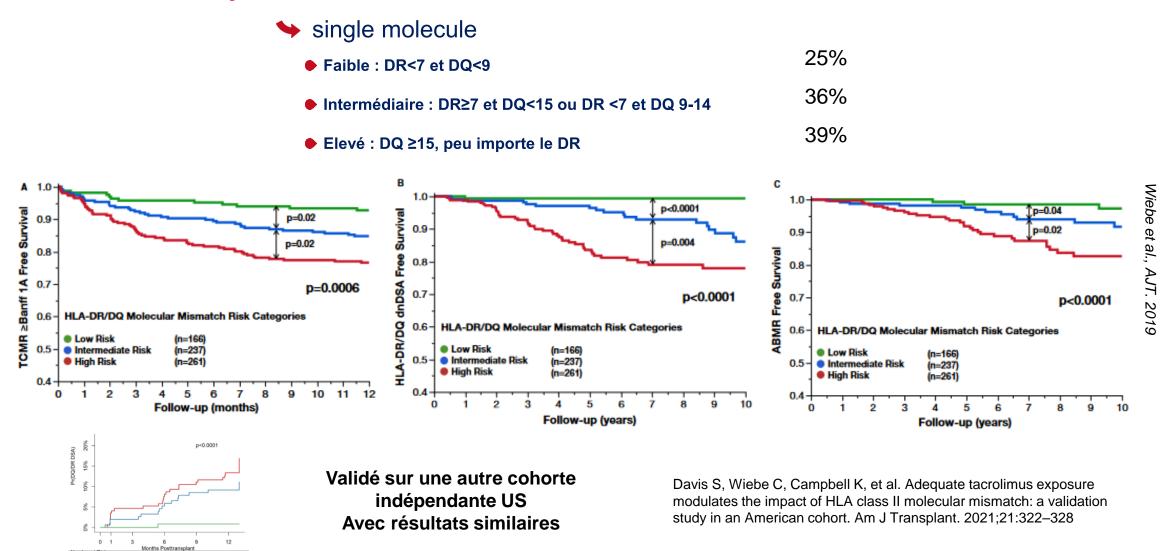
N=664 greffes

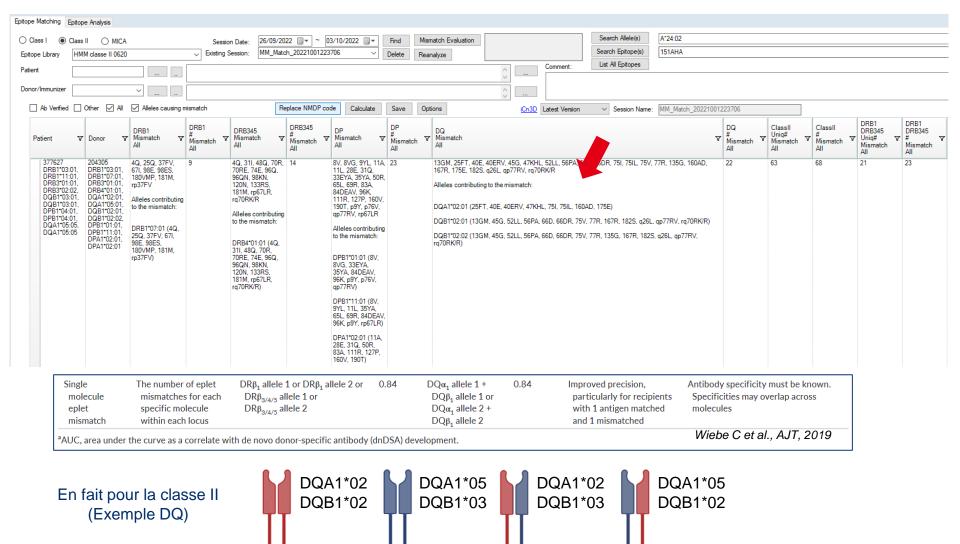

^{*}Polymorphic eplets mismatched with donor in yellow (theoretical example), alpha chain is pink, beta chain is blue, peptide is brown


FIGURE 2 Comparing HLA mismatch methods to define low risk for dnDSA. Methods of quantifying HLA mismatches are compared using a theoretical example at the HLA-DQ locus. dnDSA, de novo donor-specific antibody

DQ de novo DSA AUC

0.54 0.72 0.84

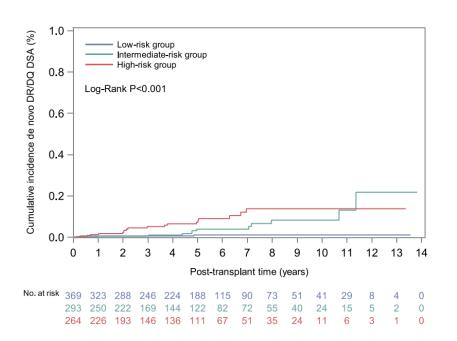



Définir le « low risk »

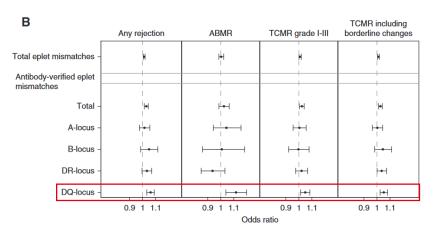
Stratifier les 25% restants?

Niveaux de risque

En pratique Exemple logiciel HLA Fusion



17


Des voix discordantes

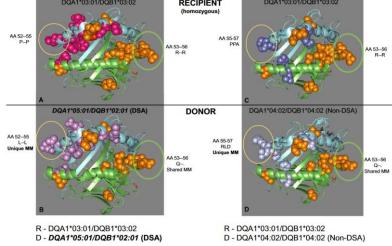
Niveaux de risque peuvent être remis en cause

- Développement possible de DSA à partir d'un seul mismatch
- Seul le DQ ressort
- ➤ Supériorité des eplets « antibody verified »

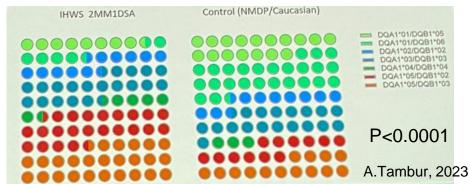
N=926 greffes

Senev A,et al. Eplet Mismatch Load and De Novo Occurrence of Donor-Specific Anti-HLA Antibodies, Rejection, and Graft Failure after Kidney Transplantation: An Observational Cohort Study. J Am Soc Nephrol. 2020.

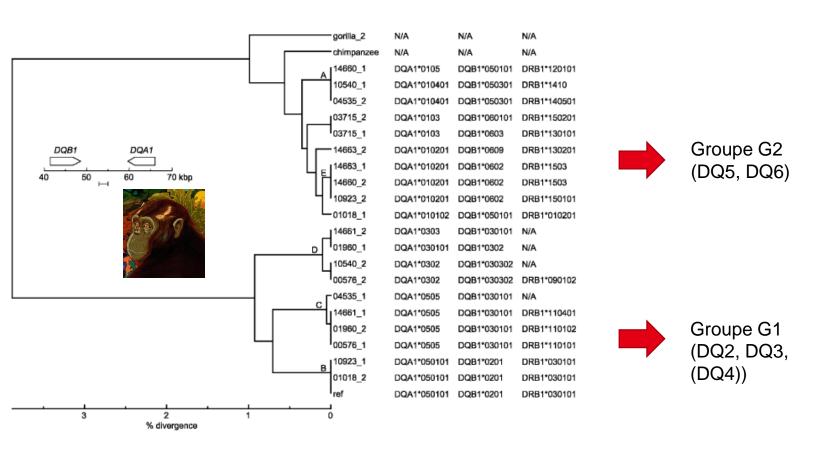
DQB1*03:01/DQA1*05, DQB1*02:01/DQA1*05


Les plus immunogenes ?

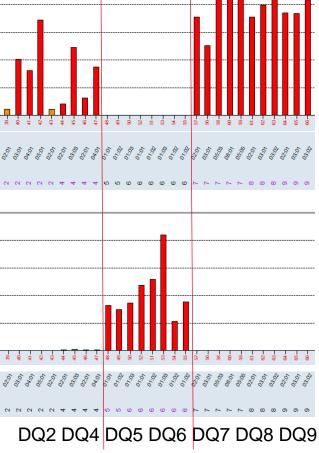
- → 265 greffes cardiaques, 64 DSA persistants
 - Pas d'association entre le nombre de mismatch eplet et la présence de DSA locus spécifique.
 - Mais ~ la moitié des cas sur :
 - DQ7 (45EV/55PP): 12 cas
 - DQA5: 11 cas
 - DQ2 (45GE3=52LL) 8 cas
 - Présence de DQA1*05/B1*02 et/ou DQA1*05/B1*03:01 mismatch confère un risqué multiplié par 4.2-fd'avoir un développement de DSA de novo persistant (OR 2.1-8.7);
 - ◆ 31% des patients avec ces mismatchs développent un dnDSA persistant compare à 10% pour ceux qui n'en ont pas.
 - Tous les mismatchs ne sont pas aussi immunogènes


McCaughan JA, Battle RK, Singh SKS, et al. Identification of risk epitope mismatches associated with de novo donor-specific HLA antibody development in cardiothoracic transplantation. Am J Transplant. 2018;

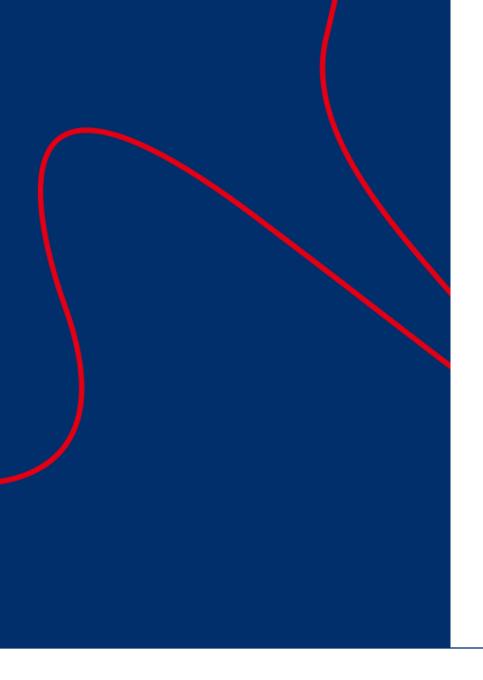
◆ Cohorte DQ 2MM 1 DSA



Tambur et al., Transplant Immunology, 2019



Evolution des haplotypes DRDQ


Depuis ~40 millions d'années

Patient DQ5, -, greffé DQ7 DQ8

Patient DQ2 DQ7, greffé DQ5,-

QUELQUES CAS QUI POSENT QUESTION

Exemple 1

Etude des parents pour GDV enfant

Receveur

```
A*03:01, *11:01; B*07:02, *55:01; C*03:03, *07:02; DRB1*13:01, *15:01;
DRB3*01:01; DRB5*, *01:01; DQB1*06:02, *06:03; DPB1*01:01, *05:01; DPA1*02:01, *02:16
DQA1*01:02, *01:03
                             Groupe DQ: G2 G2
```

Papa

A*03:01, *24:02; B*07:02, *51:01; C*01:02, *07:02; DRB1*11:01, *15:01; DRB3*02:02; DRB5*, *01:01; DQB1*03:01, *06:02; DPB1*01:01, *04:01; DPA1*01:03, *02:01; DQA1*01:02, *05:05

Eplets totaux Single molecule:

A: 18, B: 11, C: 02

DRB: 6, 7, DQB: 8, DQA: 5, DPB: 9, DPA: 0

Groupe DQ: G1 G2

Risque intermédiaire

Maman

A*02:01, *11:01; B*44:27, *55:01; C*03:03, *07:04; DRB1*13:01, *16:01; DRB3*01:01 ; DRB5*, *02:02 ; DQB1*05:02, *06:03 ; DPB1*04:01, *05:01 ; DPA1*01:03, *02:16 ; DQA1*01:02, *01:03

Eplets totaux Single Molecule:

A: 17, B: 21, C: 04

DRB: 0, 3, DQB: 8, DQA: 0, DPB: 9, DPA: 0

Groupe DQ: G2 G2

Faible risque

Exemple 2

Donneur décédé

Estimation du risque d'immunisation selon Wiebe C, Am J Transplant. 2019

DR	DQ	Risque
14,8	6	Intermediaire
8,11	6	Intermediaire
9,5	22	Elevé
3,4	0	Faible
3,5	2	Faible

- → Attention à ne pas trop biaiser l'attribution des greffons... #Equité
- > Plutôt dans la discussion

Exemple 3

Proposition de greffon pour enfant

- Papa déjà étudié pour greffe à donneur vivant
- Question clinique:
 - Accepter le greffon?
 - Risque que le papa ne puisse pas être utilisé en 2ème greffe?

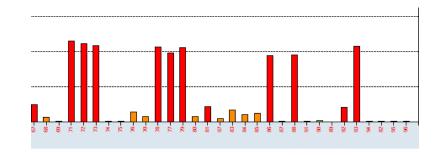
Patiente 19/12/2007 *24:02 *01:01 *35:NEW В *08:01 C *04:01 *07:01 DRB1 *13:01 *07:01 **DRB345** B4*Prés B3*prés DQB1 *02:02 *06:03 DQA1 *01:03 *02:01 DPB1 *02:01 *04:01 DPA1 NR NR

Greffon								
Donneur 203897								
Greffon Rein proposé								
*03:01	*24:02							
*27:05	*35:01							
*01:02	*03:04							
*01:01	*11:01							
/	B3*02							
*05:01	*03:01							
*01:01	*05:05							
*10:01	*04:01							
*01:03	*02:01							
	*03:01 *27:05 *01:02 *01:01 / *05:01 *01:01 *10:01							

C ... - CC - ...

Alléliques les plus probables du donneur déduits du typage de résolution intermédiaire réalisé par le centre donneur

<u>P</u>	è	r	<u>e</u>	


	17/04/1976	
А	*01:01	*26:01
В	*08:01	*37:01
С	*07:01	*06:02
DRB1	*07:01	*04:04
DRB345	B4*pres	B4*pres
DQB1	*02:02	*03:02
DQA1	*02:01	*03:01
DPB1	*02:01	*06:01
DPA1	NR	NR

- Importance de la charge épitopique entre greffon et patiente -> risque d'immunisation
- Et eplets en communs entre papa et greffon -> Risque d'immunisation croisée avec le donneur vivant en vue de 2ème greffe

Exemple 4 : Immunisation anti DP et Appel de greffe

- Donneur DPB1*78:01
- Raisonner groupe P : Pas de groupe P
- Immunisation patient :
 - Possède plusieurs anti DP

- ➤ Epregistry: DPB1*78:01 possède bien eplets p57D et 84DEAV
- > Pour les flemmards :
 - Imprimer la table des épitopes DP de l'UNOS!

	Table 4-15: Epitope based Unacceptable Antigen Assignment for DPB1								
Candidate Unacceptable Epitope				<u>Donor</u>	<u>Equivalent</u>	Antigens			
	01:01	04:01	11:01	13:01	<u>15:01</u>	23:01	26:01	27:01	<u>31:01</u>
	33:01	34:01	39:01	40:01	<u>52:01</u>	<u>55:01</u>	<u>56:01</u>	<u>58:01</u>	<u>62:01</u>
	63:01	65:01	66:01	67:01	71:01	72:01	74:01	85:01	<u>87:01</u>
	<u>89:01</u>	90:01	95:01	96:01	99:01	102:01	103:01	<u>107:01</u>	110:01
	<u>112:01</u>	<u>117:01</u>	118:01	121:01	<u>125:01</u>	<u>126:01</u>	<u>127:01</u>	128:01	<u>133:01</u>
	134:01	138:01	142:01	147:01	149:01	150:01	158:01	160:01	<u>162:01</u>
	<u>169:01</u>	<u>173:01</u>	<u>174:01</u>	<u>175:01</u>	<u>176:01</u>	<u>177:01</u>	<u>178:01</u>	179:01	<u>180:01</u>
	181:01	192:01	193:01	194:01	<u>195:01</u>	<u>199:01</u>	201:01	202:01	206:01
	207:01	209:01	212:01	213:01	220:01	224:01	225:01	227:01	228:01
	230:01	231:01	232:01	240:01	244:01	246:01	247:01	250:01	<u>253:01</u>
<u>55AAE</u>	<u>255:01</u>	<u>262:01</u>	<u>264:01</u>	<u>267:01</u>	<u>268:01</u>	<u>272:01</u>	<u>275:01</u>	<u>276:01</u>	<u>278:01</u>

Conclusion

Mismatch moleculaire

- Une approche qui complète la nomenclature
- Intérêt de regarder en single molécule
- Liste d'eplets à retravailler
- La recherche des motifs les plus immunogènes
- Besoin d'études supplémentaires pour allocation
- Combinaison Epitope B / Epitope T
- Moleculaire (ou non), le matching DQ est d'intérêt

AU SERVICE DES PATIENTS

